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Abstract. We show equivalence of pure point diffraction and pure point dynamical spec-
trum for measurable dynamical systems built from locally finite measures on locally compact
Abelian groups. This generalizes all earlier results of this type. Our approach is based on a
study of almost periodicity in a Hilbert space. It allows us to set up a perturbation theory
for arbitrary equivariant measurable perturbations.

1. Introduction

This paper deals with mathematical diffraction theory and its relationship to dynamical
systems. Our main motivation comes from the study of aperiodic order.

The study of (dis)order is a key issue in mathematics and physics today. Various regimes
of disorder have attracted particular attention in recent years. A most prominent one is long
range aperiodic order or, for short, aperiodic order. There is no axiomatic framework for
aperiodic order yet. It is commonly understood to mean a form of (dis)order at the very
border between periodicity and disorder. While giving a precise meaning to this remains one
of the fundamental mathematical challenges in the field, a wide range of distinctive feature
has been studied in such diverse fields as combinatorics, discrete geometry, harmonic analysis,
K-theory and Schrödinger operators (see e.g. the monographs and proceeding volumes [8, 22,
33, 37, 43, 50]).

Part of this research is certainly triggered by the actual discovery of physical substances
exhibiting this form of disorder twenty five years ago [44, 23]. These substances were discov-
ered experimentally by their unusual and rather striking diffraction patterns. These exhibit a
(large) pure point component (meaning order) with symmetries incompatible with periodicity
(meaning aperiodicity). Of course, the discovery of quasicrystals by diffraction experiments
lead to a particular interest in diffraction theory of aperiodic order. Besides this externally
motivation, there also is a strong intrinsic mathematical interest in diffraction theory.

In order to be more precise on this point, let us shortly and with some grains of salt describe
mathematical diffraction theory (see Section 4 for details). In mathematical diffraction theory,
the solid in question is modeled by a measure. The diffraction is then described by the Fourier
transform of this measure. The basic intuition is now that order in the original measure will
show up as a (large) pure point component in its Fourier transform. A particular instance of
this intuition is given by the Poisson summation formula. To extend this intuition has been
a driving force of the conceptual mathematical study of diffraction for aperiodic order (see
e.g. Lagarias’ article [25]). Let us emphasize that this conceptual mathematical question has
already attracted attention before the dawn of quasicrystals, as can be seen e.g in Meyer’s
book [32] or the corresponding chapters in Queffelec’s book [39].

As mentioned already, we will be concerned with the connection of diffraction theory and
dynamical systems. Recall that (dis)order is commonly modeled by dynamical systems. The
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elements of the dynamical system then represent the various manifestations of the ’same’ form
of disorder. This dynamical system then induces a unitary representation of the translation
group. The spectrum of the dynamical system is the spectrum of this unitary representation.
Starting with the work of Dworkin [13], it has been shown in various degrees of generality
[21, 46] that the dynamical spectrum contains the diffraction spectrum (see [39] for a similar
statement as well). On the other hand, by the work of van Enter and Miȩkisz [14] it is clear
that in general the dynamical spectrum may be strictly larger than the diffraction spectrum.

In view of the results of [14], it is most remarkable that the two spectra are yet equiva-
lent once it comes to pure point spectrum. More precisely, pure point dynamical spectrum
is equivalent to pure point diffraction spectrum. This type of result has been obtained by
various groups in recent years [26, 3, 18]. First Lee/Moody/Solomyak [26] showed the equiv-
alence for uniquely ergodic dynamical systems of point sets in Euclidean space satisfying a
strong local regularity condition viz finite local complexity. Their result was then extended
by Gouéré [18] and by Baake/Lenz [3] to more general contexts. In particular, it was freed
from the assumptions of unique ergodicity and finite local complexity. While there is some
overlap between [18] and [3], these works are quite different in terms of models and meth-
ods. Gouéré deals with measurable point processes in Euclidean space, using Palm measures
and Bohr/Besicovich almost periodicity. Thus, his result is set in the measurable category.
Baake/Lenz leave the context of points altogether by dealing with translation bounded mea-
sures on locally compact abelian groups. Their results are then, however, restricted to a
topological context. In fact, a key step in their setting is to replace the combinatorial analysis
of [26] by a suitable application of the Stone/Weierstrass theorem.

Given this state of affairs it is natural to ask whether the corresponding results of [18] and [3]
on dynamical systems can be unified. This amounts to developing a diffraction theory based on
measure dynamical systems in the measurable category. This is not only of theoretical interest.
It is also relevant for perturbation theory. More precisely, one may well argue that aperiodic
order is topological in nature and, hence, a treatment of aperiodic order in the topological
category suffices. However, a more realistic treatment should allow for perturbations as well.
By their very nature, these perturbations should not be restricted to the topological category.
They should rather be as general as possible. In order to accommodate this a measurable
framework seems highly desirable. The overall aim of this article is then to provide such a
framework. More precisely, the aims are to

• develop a diffraction theory for measure dynamical systems unifying the corresponding
treatments of [18, 17] and [3],
• set up a measurable perturbation theory for these systems.

Along our way, we will actually present

• a new method of proving the equivalence of pure point diffraction and pure point
dynamical spectrum based on a stability result for the pure point subspace of a unitary
representation.

This stability result may be of independent interest. Its proof is close in spirit to consider-
ations of [18] by relying on almost periodicity on Hilbert space. It also ties in well with other
recent work focusing on almost periodicity in the study of pure point diffraction [6, 29, 49].

The paper is organized as follows:
In Section 2, we discuss some general facts concerning the point spectrum of a strongly

continuous unitary representation. The main abstract result, Theorem 2.3, gives a stability
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result for the pure point subspace. This result is then applied to measure dynamical systems
and gives Corollary 2.5. This corollary establishes that the subspace belonging to the point
spectrum is invariant under composition with bounded functions. These results are the main
abstract new ingredients in our reasoning. They may be useful in other situations as well.
The dynamical systems we are dealing with are introduced in Section 3. They are built
from locally finite measures on locally compact Abelian (LCA) groups. We study a dense
set of functions on the corresponding L2-space and use it to obtain strong continuity of the
associated representation of G in Theorem 3.6. The setting for diffraction theory is discussed
in Section 4. As shown there, the topological approach of [3] can be extended to a measurable
setting, once a certain finiteness assumption is made. In particular, there is an abstract way
to define the autocorrelation measure, Prop 4.1. We then come to the relationship between
diffraction and the spectral theory of the dynamical systems in Section 5. The crucial link
is provided by Theorem 5.3 which states that the Fourier transform of the autocorrelation
is a spectral measure for a subrepresentation. When combined with the abstract results of
Section 2, this gives Theorem 5.5 showing the equivalence of the two notions of pure point
spectrum. In Section 6 we use our results to briefly set up a perturbation theory.

2. Point spectrum of strongly continuous unitary representations and
measurable dynamical systems

In this section, we discuss the pure point subspace of a strongly continuous unitary repre-
sentation. We obtain an abstract stability result for this subspace and apply it to dynamical
systems.

Let G be a locally compact, σ-compact, Abelian group. The dual group of G is denoted
by Ĝ, and the pairing between a character λ ∈ Ĝ and an element t ∈ G is written as (λ, t),
which, of course, is a number on the unit circle.

A unitary representation T of G in the Hilbert space H is a group homomorphism into
the group of unitary operators on H. It is called strongly continuous if the map G −→ H,
t 7→ T tf , is continuous for each f ∈ H. As usual, the inner product on a Hilbert space is
denoted by 〈·, ·〉.

A non-zero f ∈ H is called an eigenfunction of T if there exists a λ ∈ Ĝ with T tf = (λ, t)f
for every t ∈ G. The closure of the linear span of all eigenfunctions of T will be denoted by
Hpp(T ). T is said to have pure point spectrum, if Hpp(T ) = H.

For a strongly continuous T there exists by Stone’s Theorem (compare [31]) a map

ET : Borel sets on Ĝ −→ Projections on H

with

• ET (∅) = 0, ET (G) = Identity,
• ET (A) = ⊕ET (Aj) whenever A is the disjoint union of the Borel sets Aj , j ∈ N,

such that

〈f, T tf〉 =
∫
Ĝ

(λ, t) d〈f,ET (λ)f〉 =:
∫
Ĝ

(λ, t) dρf (λ),

where ρf is the measure on Ĝ defined by ρf (B) := 〈f,ET (B)f〉. Because of its properties ET
is called a projection valued measure.
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A continuous function p on G with values in a Banach space (X, ‖ · ‖) (e.g. X = C or
X = H) is called almost periodic if for every ε > 0, the set

{t ∈ G : ‖p(t+ s)− p(s)‖ < ε for all s ∈ G}
is relatively dense in G. Here, a subset S of G is called relatively dense if there exists a
compact subset K of G with S + K = G. If p(t) = T tx for some x ∈ H, and a strongly
continuous T then the almost periodicity of p is equivalent to the closure p(G) of p(G) being
compact.

We can now formulate the following characterization of Hpp(T ).

Lemma 2.1. Let T be a strongly continuous unitary representation of G on H. Then, the
following assertions are equivalent for f ∈ H:

(i) The map G −→ H, t 7→ T tf , is almost periodic.
(ii) The map G −→ C, t 7→ 〈f, T tf〉, is almost periodic.

(iii) ρf is a pure point measure.
(iv) f belongs to Hpp(T ).

Proof. The equivalence of (iii) and (iv) is standard. The equivalence of (ii) and (iii) follows by
a result of Wiener as t 7→ 〈f, T tf〉 is the Fourier transform of ρf . The implication (i) =⇒ (ii)
is clear. It remains to show (ii) =⇒ (i): A direct calculation gives

‖f − T tf‖2 = 2〈f, f〉 − 〈f, T tf〉 − 〈f, T tf〉 ≤ 2|〈f, f〉 − 〈f, T tf〉|.
Now, the desired result follows. �

For our further analysis, we need some more pieces of notation. A measure ρ on Ĝ is said to
be supported on the subset S of Ĝ if there exists a measurable subset S′ of S with ρ(Ĝ\S′) = 0.
For a subgroup S of Ĝ equipped with the discrete topology (which may not be the topology
induced by G!), the dual group Ŝ is compact. The injective group homomorphism S −→ Ĝ,
λ 7→ λ, induces the group homomorphism G −→ Ŝ, t 7→ (λ 7→ (λ, t)). The latter will be
denoted by j. It has dense range. Conversely, if T is a compact group and j : G −→ T is a
continuous group homomorphism with dense range, then T̂ can naturally be considered to be
a subgroup of Ĝ with the discrete topology via i : T̂ −→ Ĝ, i(λ)(t) := (λ, j(t)).

Lemma 2.2. Let a strongly continuous unitary representation T of G on H and f ∈ H be
given.

(a) If f belongs to Hpp(T ) with ρf supported on the subgroup S of Ĝ and j : G −→ Ŝ is
the canonical group homomorphism, then t 7→ T tf can be lifted to a continuous map on Ŝ,
i.e. there exists a continuous map u : Ŝ −→ H with u ◦ j(t) = T tf for every t ∈ G.

(b) Let T be a compact group and j : G −→ T a continuous group homomorphism with
dense range. If u : T −→ H is continuous with u ◦ j(t) = T tf for every t ∈ G, then f belongs
to Hpp(T ) and ρf is supported on i(T̂).

Proof. (a) As f belongs to Hpp(T ) and ρf is supported on S, we have f =
∑

λ∈S cλfλ with
fλ which are either 0 or normalized eigenfunctions to λ. Then,

∑
λ∈S |cλ|2 <∞ as the fλ are

pairwise orthogonal. As |(σ, λ)| has modulus one for each λ ∈ S and σ ∈ Ŝ and σ 7→ (σ, λ) is
continuous, the map, u : Ŝ −→ H,

u(σ) :=
∑
λ∈S

(σ, λ)cλfλ
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can easily be seen to have the desired properties.
(b) By u ◦ j(t) = T tf , we infer that {T tf : t ∈ G} is contained in u(T), which is compact

as u is continuous and T is compact. Hence, f belongs to Hpp(T ). Moreover, by ρ̂f (t) =
〈f, T tf〉 = 〈f, u◦ j(t)〉, we infer that ρ̂f (t) can be lifted to a continuous function g on T. Note
that g is positive definite as ρ̂f (t) is positive definite and j has dense range. Since T is a
compact group and g is positive definite and continuous, we can write

g =
N∑
k=1

akχk.

Here, N =∞ or N ∈ N and the χk belong to T̂ and the sum on the right converges uniformly.
Evaluating g on j(t) for some t ∈ G we then obtain

ρ̂f (t) =
N∑
k=1

akχk ◦ j(t) .

Since the (inverse) Fourier transform is continuous in the uniform topology, we obtain by
taking the inverse Fourier transform

ρf =
N∑
k=1

akδ−i(χk) ,

with the sum on the right converging in the vague topology. This gives that ρf is supported
on i(T̂) ⊂ Ĝ. �

These lemmas yield the following abstract stability result for Hpp(T ).

Theorem 2.3. Let T be a strongly continuous unitary representation of G on H. Let C :
H −→ H be continuous with T tCf = CT tf for each t ∈ G and f ∈ H. Then, C maps Hpp(T )
into Hpp(T ). If f belongs to Hpp(T ) and ρf is supported on the subgroup S of Ĝ, then so is
ρCf .

Remark. Let us emphasize that C is not assumed to be linear.

Proof. Choose f ∈ Hpp(T ) arbitrary. Let A := {T tCf : t ∈ G} and B := {T tf : t ∈ G}.
Then, B is compact by the Lemma 2.1 As C is continuous and commutes with T this yields
that A = C(B) is compact as well. Then, by Lemma 2.1 again, Cf belongs to Hpp(T ).

It remains to show the statement about ρCf : Equip S with the discrete topology and
denote its compact dual group by T. As ρf is supported in S, part (a) of the previous
lemma shows that t 7→ T tf can be lifted to a continuous map u on T. As C is continuous,
t 7→ CT tf = T tCf , then lifts to the continuous map C ◦ u : T −→ H. By (b) of the previous
lemma, ρCf is then supported in S as well. �

We now come to an application of these considerations to measurable dynamical systems.
Let a measurable space (Ω,ΣΩ) consisting of a set Ω and a σ-algebra ΣΩ on it be given. Let

α : G×Ω −→ Ω

be an action which is measurable in each variable. Then (Ω,α) is called a measurable dynam-
ical system. Let m be a G-invariant probability measure on Ω and denote the set of square
integrable functions on Ω, with respect to m, by L2(Ω,m). This space is equipped with the
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inner product 〈f, g〉 :=
∫
f(ω)g(ω) dm(ω). The action α induces a unitary representation T

of G on L2(Ω,m) in the obvious way, namely T th is given by (T th)(ω) := h(α−t(ω)).
Let Cc(C) be the set of continuous functions on C with compact support. Then, the

following holds.

Lemma 2.4. Let (Ω,ΣΩ) be a measure space with a probability measure m. For each g ∈
Cc(C), the map Cg : L2(Ω,m) −→ L2(Ω,m), f 7→ g ◦ f , is uniformly continuous.

Proof. Choose ε > 0 arbitrary. As g is uniformly continuous, there exists a δ > 0 such that

|g(x)− g(y)|2 ≤ ε

2
whenever |x− y| ≤ δ.

Set M := max{|g(x)| : x ∈ C}. By a direct Tchebycheff type estimate we have for arbitrary
h, h′ ∈ L2(Ω,m)

m(Ωδ,h,h′) ≤
‖h− h′‖2

δ2

where
Ωδ,h,h′ = {ω ∈ Ω : |h(ω)− h′(ω)| ≥ δ}.

Setting Dh,h′ := |g ◦ h− g ◦ h′| we obtain∫
Ω
D2
h,h′dm(ω) =

∫
Ωδ,h,h′

D2
h,h′dm+

∫
Ω\Ωδ,h,h′

D2
h,h′dm

≤ m(Ωδ,h,h′) 4M2 +m(Ω \Ωδ,h,h′)
ε

2

≤ 4M2‖h− h′‖2

δ2
+
ε

2
.

This finishes the proof. �

Corollary 2.5. Let (Ω,α) be a measurable dynamical system and m an α-invariant prob-
ability measure on Ω such that the associated unitary representation is strongly continuous.
Then, for arbitrary f ∈ Hpp(T ) and g ∈ Cc(C), the function g ◦ f belongs to Hpp(T ) and if
ρf is supported on the subgroup S of Ĝ, so is ρg◦f .

Proof. This follows from the previous lemma and Theorem 2.3. �

We also note the following result on compatibility of almost periodicity with products,
which is a slight generalization of Lemma 1 of [3] and Lemma 3.7 in [26].

Lemma 2.6. Let (Ω,α) be a measurable dynamical system and m an α-invariant probability
measure on Ω such that the associated unitary representation is strongly continuous. Let f
and g be bounded functions in Hpp(T ) such that ρf and ρg are supported on the subgroup S

of Ĝ. Then, fg is a bounded function in Hpp(T ) and ρfg is supported on S as well.

Proof. It is shown in Lemma 1 of [3] that the product of bounded functions in Hpp(T ) belongs
again to Hpp(T ). Here, we give a different proof, which shows the statement on the support of
the spectral measures as well. By (a) of Lemma 2.2, there exist continuous maps uf : Ŝ −→
L2(Ω,m) and ug : Ŝ −→ L2(Ω,m) with uf ◦ j(t) = T tf and ug ◦ j(t) = T tg for all t ∈ G.
Then, using the boundedness of f and g, we can easily infer that

u := ufug : S̃ −→ L2(Ω,m)
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is continuous. By construction we have u ◦ j(t) = T t(fg) for all t ∈ G. Thus, the desired
statement follows from (b) of Lemma 2.2. �

3. Measure dynamical systems

In this section, we introduce the measurable dynamical systems we are dealing with. These
will be dynamical systems of measures on groups. These systems are interesting objects
in their own right. Moreover, as discussed in the next section, they provide an adequate
framework for diffraction theory.

Let G be the fixed σ-compact LCA group. The set of continuous functions on G with
compact support is denoted by Cc(G). It is equipped with the locally convex limit topology
induced by the canonical embeddings CK(G) ↪→ Cc(G), where CK(G) is the space of complex
continuous functions with support in K ⊂ G compact. The support of ϕ ∈ Cc(G) is denoted
by supp(ϕ). The set M(G) is then defined to be the dual of the the space of Cc(G) i.e. the
space of continuous linear functionals on Cc(G). The elements of M(G) can be considered
as complex measures. The total variation |µ| of an element of M(G) is again an element of
M(G) and in fact a positive regular Borel measure characterized by

|µ|(ϕ) = sup{|µ(ψ)| : ψ ∈ Cc(G) real valued with |ψ| ≤ ϕ}

for every nonnegative ϕ ∈ Cc(G). Moreover, there exist a measurable u : G −→ C with
|u(t)| = 1 for |µ|-almost every t ∈ G with

µ(ϕ) =
∫
uϕd|µ|

for every ϕ ∈ Cc(G). This allows us in particular to define the restriction of µ to subsets of
G in the obvious way.

The space M(G) carries the vague topology. This topology equals the weak-∗ topology of
Cc(G)∗, i.e., it is the weakest topology which makes all functionals µ 7→ µ(ϕ), ϕ ∈ Cc(G),
continuous. Thus, if we define

f : Cc(G) −→ {functions on M(G)} , ϕ 7→ fϕ , by fϕ(µ) :=
∫
G
ϕ(−s) dµ(s),

then the topology is generated by

{f−1
ϕ (O) : ϕ ∈ Cc(G), O ⊂ C open}.

Here, the reader might wonder about the sign in the definition of fϕ. This sign is not necessary.
However, it does not matter either as G −→ G, s 7→ s−1, is a homeomorphism. It will simplify
some formulae later on.

We will be concerned with measurable dynamical systems consisting of elements ofM(G).
Thus, we need a σ-algebra on M(G) and an action of G. These will be provided next. We
start with the σ-algebra. As discussed above, M(G) is a topological space. Thus, it carries
a natural σ-algebra, namely the Borel σ-algebra generated by the open sets. Denote this
algebra by ΣM(G).

Remark. If G has a countable basis of the topology then the restriction of the Borel
σ-algebra to the set M(G)+ of nonnegative measures is the σ-algebra Σ′ generated by
{f−1
ϕ (O) ∩ M(G)+ : ϕ ∈ Cc(G), O ⊂ C open}. This is a consequence of the well known

second countability of the vague topology on M(G)+ (See Chapter IV, Section 31 in [7]). A
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proof can be given along the following line: The set M(G)+ with the vague topology is a
second countable metric space and a metric can be given as

d(µ, ν) :=
∑
n∈N

|fϕn(µ)− fϕn(ν)|
2n(1 + |fϕn(µ)− fϕn(ν)|)

with a suitable dense set {ϕn : n ∈ N} in Cc(G). The definition of the metric shows that all
balls Bs(µ) := {ν ∈ M(G)+ : d(µ, ν) < s}, µ ∈ M(G)+, s ≥ 0, belong to Σ′. This is then
true for countable unions of such balls as well and the statement follows.

Lemma 3.1. The map fϕ ◦ | · | is measurable for every ϕ ∈ Cc(G). In particular, the map
M(G) −→M(G), µ 7→ |µ|, is measurable.

Proof. It suffices to show that fϕ◦|·| is measurable for every ϕ ∈ Cc(G) with ϕ ≥ 0. Standard
theory (see Chapter 6 in [38] and Proposition 1 in [3]) gives

fϕ(|µ|) = sup{|fψϕ(µ)| : ψ ∈ Cc(G), ‖ψ‖∞ ≤ 1}.

As µ 7→ |fψϕ(µ)| is continuous, fϕ ◦ | · | is then semicontinuous and hence measurable. �

As for the action of G on M(G), there is a natural action of G on M(G) given by

α : G×M(G) −→ M(G) , αt(µ) := δt ∗ µ,

where δt is the unit point measure at t ∈ G. Here, the convolution µ ∗ ν of two convolvable
elements of M(G) is the measure defined by

(
µ ∗ ν

)
(ϕ) :=

∫
G×G ϕ(s+ t) dµ(t) dν(s).

The map α is measurable in each variable, as shown in the next lemma.

Lemma 3.2. (a) For fixed µ ∈M(G), the map G −→M(G), t 7→ αtµ, is continuous, hence
also measurable.

(b) For fixed t ∈ G, the map M(G) −→ M(G), µ 7→ αtµ, is continuous, hence also
measurable.

Proof. This is straightforward. �

Putting this together, we see thatM(G) equipped with the Borel σ-algebra and the natural
action of G by shifts is a measurable dynamical system.

As discussed in Section 2, every α-invariant probability measure m on M(G) induces a
unitary representation T of G on L2(M(G),m).

For further understanding of this unitary representation, it will be crucial to control it by
a suitable set of functions. This set of functions is introduced next.

Definition 3.3. Consider the algebra generated by the set

{g ◦ fϕ : g ∈ Cc(C), ϕ ∈ Cc(G)}.

Let A(G) be the closure of this algebra in the algebra of all continuous bounded functions on
M(G) equipped with the supremum norm. An α-invariant probability measure m on M(G)
is said to satisfy the denseness assumption (D) if the algebra A(G) is dense in L2(M(G),m).

Note that condition (D) means that the set of finite products of functions of the form g◦fϕ,
g ∈ Cc(C), ϕ ∈ Cc(G), is total in L2(M(G),m).

We now discuss two instances in which condition (D) holds.



POINT SPECTRUM FOR MEASURE DYNAMICAL SYSTEMS 9

Proposition 3.4. Let m be an α-invariant probability measure onM(G). If the restriction of
the σ-algebra of M(G) to the support of m is generated by the set {f−1

ϕ (O) : ϕ ∈ Cc(G), O ⊂
C open}, then (D) holds. In particular, (D) holds whenever G has a countable basis of topology
and m is supported on the set of nonnegative measures.

Proof. As C has a countable basis of the topology, the σ-algebra on M(G) is then generated
by the set {f−1

ϕ (K) : ϕ ∈ Cc(G),K ⊂ C compact}. In particular, the corresponding set of
products of of characteristic functions

{1K ◦ fϕ : ϕ ∈ Cc(G),K ⊂ C compact}
is total in L2(M(G),m). Here, 1S denotes the characteristic function of S. Therefore, it
suffices to show that all functions of the form 1K ◦ fϕ, ϕ ∈ Cc(G), K ⊂ C compact, can be
approximated by functions of the form g ◦ fϕ with g ∈ Cc(C). This can be done by choosing,
for K ⊂ C compact, a compact L ⊂ C containing K and a sequence (gn) of nonnegative
functions in Cc(C) such that gn converge pointwise to 1K , are all supported in L and are
uniformly bounded by, say, 1.

The ’in particular’ statement now follows from the last remark. �

Proposition 3.5. The condition (D) is satisfied whenever m is supported on a compact
α-invariant subset of M(G).

Proof. This follows by a Stone/Weierstrass type argument (see [3] as well): The algebra
in question separate the points, does not vanish identically anywhere and is closed under
complex conjugation. The algebra is then dense in the set of continuous functions on the
compact support of m. Hence, it is dense in L2(M(G),m) as well. �

Remark. The previous propositions imply that (D) holds in all the settings considered
for diffraction so far. More precisely, the setting of uniformly discrete point sets discussed
e.g. in the survey article [25] its generalization to translation bounded measures [3] deal with
compact subsets of M(G). On the other hand the point process setting first introduced by
[18] deals with Rd and hence admits a countable basis of topology.

Theorem 3.6. Let m be an α-invariant probability measure on M(G), which satisfies (D).
Then, the representation T is strongly continuous.

Proof. As T t is unitary for every t ∈ G, it is bounded with norm 1 uniformly in t ∈ G. By
(D), it therefore suffices to show continuity of t 7→ T tf for f a finite product of functions of
the form g ◦ fϕ with ϕ ∈ Cc(G) and g ∈ Cc(C). It suffices to show continuity at t = 0. As

T t(f1f2)− f1f2 = (T tf1)T tf2 − f1f2 = (T tf1)(T tf2 − f2) + (T tf1 − f1)f2

and functions of the form g ◦ fϕ with g ∈ Cc(C) and ϕ ∈ Cc(G) are bounded, it suffices to
consider f = g ◦ fϕ. Let K be an arbitrary compact neighborhood of 0 ∈ G. Let L be a
compact set in G with L ⊃ K − suppϕ and ψ ∈ Cc(G) nonnegative with ψ ≡ 1 on L. Then,

|ϕ(t− s)− ϕ(−s)| ≤ ψ(−s)‖ϕ(t− ·)− ϕ(−·)‖∞
for every s ∈ G and t ∈ K and, in particular,

(∗) |fϕ(α−tµ)− fϕ(µ)| ≤
∫
G
|ϕ(t− s)− ϕ(−s)|d|µ|(s) ≤ ‖ϕ(t− ·)− ϕ(−·)‖∞fψ(|µ|)

for every t ∈ K. As µ 7→ fψ(|µ|) is measurable, the set

ΩN := {µ ∈M(G) : fψ(|µ|) ≤ N}
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is measurable for each N ∈ N. Obviously, these sets are increasing and cover M(G). Thus,
for each ε > 0, there exists N(ε) ∈ N with m(M(G) \ΩN(ε)) ≤ ε. Invoking (∗), we then get

‖T tg ◦ fϕ − g ◦ fϕ‖2 =
∫
M(G)

|g ◦ fϕ(α−tµ)− g ◦ fϕ(µ)|2dm(µ)

=
∫
ΩN(ε)

| · |2dm(µ) +
∫
M(G)\ΩN(ε)

| · |2dm(µ)

≤ B(t, ε) + ε4‖g‖2∞
with

B(t, ε) := sup{|g(x)− g(y)|2 : |x− y| ≤ N(ε)‖ϕ(t− ·)− ϕ(−·)‖∞}.
As g is uniformly continuous, B(t, ε) becomes arbitrarily small for t close to 0 and ε fixed.
This easily shows the desired continuity. �

For our further consideration, we will need a certain finiteness assumption on the probability
measure m. This assumption is well known in the theory of stochastic processes. It is given
in the next definition.

Definition 3.7. The α-invariant probability measure m on M(G) is called square integrable
if fϕ ◦ | · | :M(G) −→ C belongs to L2(M(G),m) for every ϕ ∈ Cc(G).

Lemma 3.8. Let m be an α-invariant square integrable probability measure m on M(G).
Then, the map Cc(G) −→ L2(M(G),m), ϕ 7→ fϕ, is continuous.

Proof. We have to show that CK(G) −→ L2(M(G),m), ϕ 7→ fϕ, is continuous for every
compact K in G. Let ψ ≥ 0 be a function in Cc(G) with ψ ≡ 1 on K. Then,

|ϕ(s)| ≤ ψ(s)‖ϕ‖∞
for every ϕ ∈ CK(G). This gives

‖fϕ‖2 =
∫ ∣∣∣∣∫ ϕ(−s)dω(s)

∣∣∣∣2 dm(ω) ≤
∫ ∣∣∣∣∫ ψ(−s)‖ϕ‖∞d|ω|(s)

∣∣∣∣2 dm(ω)

= ‖ϕ‖2∞
∫
|fψ(|ω|)|2dm(ω)

and the desired continuity follows. �

Remark. Note that the lemma gives another proof for the strong continuity of T in
the case of square integrable measures m satisfying (D). More precisely, for ϕ ∈ Cc(G) and
g ∈ Cc(C), the map G −→ L2(M(G),m), t 7→ T t(g◦fϕ) can be composed into the continuous
maps G −→ Cc(G), t 7→ ϕ(· − t), f : Cc(G) −→ L2(M(G),m), and Cg : L2(M(G),m) −→
L2(M(G),m), h 7→ g ◦ h.

Definition 3.9. Let m be square integrable. Then, U is defined to be the closure of {fϕ :
ϕ ∈ Cc(G)} in L2(M(G),m).

Lemma 3.10. Let m be square integrable. U is a T -invariant subspace.

Proof. This is immediate from T tfϕ = fϕt with ϕt(s) = ϕ(t− s). �
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4. Diffraction theory and the autocorrelation measure

In this section, we present a basic setup for diffraction theory for our measure dynamical
systems. Before we actually start with the mathematical formulation, we shortly discuss the
physical context of our setting and the relationship of the presented material to earlier work.

In the simplest models for diffraction of a solid, the solid in question is modeled by a subset
Λ of Euclidean space, which describes the positions of the atoms of the solid. The diffraction of
an incoming beam is then governed by interference of beams scattered by different points of the
solid. Thus, the relevant set is the set of differences between points of Λ or rather differences
averaged according to occurrence. This yields the so-called autocorrelation measure γΛ of Λ
given by

γΛ := lim
n→∞

1
|Bn|

∑
x,y∈Bn∩Λ

δx−y = lim
n→∞

1
|Bn|

δΛ∩Bn ∗ δ−Λ∩Bn .

Here, Bn is the ball around the origin with radius n, |Bn| is its volume, δx denotes the point
measure at x and the limit is assumed to exist. The diffraction of Λ is then described by the
Fourier transform of γΛ (see e.g. [19] for further details on this approach). In order to obtain
existence of the limit, one usually introduces a framework of dynamical systems and uses an
ergodic theorem.

In fact, as shown recently [18, 17] (see [3] as well), it is possible to express the limit by
a closed formula. This opens up the possibility to define the autocorrelation by this closed
formula irrespective whether the dynamical system is ergodic or not. This approach has been
taken in [3]. In fact, as argued in [3, 4], it is more appropriate to work with measures than
with point sets. This lead to the notion of measure dynamical system. In the framework of
aperiodic order, it is natural to restrict attention to topological dynamical systems and this
is what has been analyzed in [3, 4]. However, as discussed in the introduction both from the
mathematical point of view and from the point of view of perturbation theory, it is natural to
leave the topological category and develop diffraction theory in the measurable category. This
is done next. While our overall line of reasoning certainly owes to [3], we have to overcome
various technical issues. More precisely, as [3] deals with a topological situation and compact
spaces, all functions fϕ (defined above) were uniformly bounded there. This is not the case
here anymore. To remedy this, we use the assumption of square integrability.

We start by introducing some further notation: For a measure µ on G and a set B ⊂ G, we
denote by µB the restriction of µ to B. For a function ζ on G we define ζ̃ by ζ̃(s) := ζ(−s).
For a measure µ on G we define the measure µ̃ by µ̃(ϕ) := µ(ϕ̃).

Lemma 4.1. Let m be an α-invariant square integrable probability measure m on M(G).
Let a function σ ∈ Cc(G) be given with

∫
G σ(t) dt = 1. For ϕ ∈ Cc(G), define

γσ,m(ϕ) :=
∫
Ω

∫
G

∫
G
ϕ(s− t)σ(t) dω(s) dω(t) dm(ω).

Then, the following holds:

(a) The map γσ,m : Cc(G) −→ C is continuous, i.e., γσ,m ∈M(G).
(b) For ϕ,ψ ∈ Cc(G), the equation

(
ϕ̃ ∗ ψ ∗ γσ,m

)
(t) = 〈fϕ, T tfψ〉 holds.

(c) The measure γσ,m does not depend on σ ∈ Cc(G), provided
∫
G σ dt = 1.

(d) The measure γσ,m is positive definite.
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Proof. (a) We have to show that γσ,m restricted to CK(G) is continuous for every compact K
in G. Choose ψ ∈ Cc(G) non-negative with ψ ≡ 1 on supp(σ) +K. Thus,

|ϕ(s− t)σ(t)| ≤ ψ(s)‖ϕ‖∞|σ|(t)

for all ϕ ∈ CK(G) and s, t ∈ G. For ϕ ∈ CK(G) we can then estimate

|γσ,m(ϕ)| ≤
∣∣∣∣∫
Ω

∫
G

∫
G
|ϕ(s− t)σ(t)|d|ω|(t) d|ω|(s) dm(ω)

∣∣∣∣
≤

∫
Ω

∫
G

∫
G
ψ(s)‖ϕ‖∞|σ(t)| d|ω|(t) d|ω|(s) dm(ω)

= ‖ϕ‖∞
∫
Ω
f
ψ̃

(|ω|)f|σ̃|(|ω|)dm(ω),

and the statement follows.
(b) This follows by a direct computation (see Proposition 6 of [3] as well).
(c) Fix ϕ ∈ Cc(G). By α-invariance of m, we find that the map σ 7→ γσ,m(ϕ) is α-invariant

and hence a multiple of Haar measure on G. This shows the claim.
(d) This is a direct consequence of (b). �

The preceding lemma allows us to associate to any square integrable probability measure
an autocorrelation and a diffraction measure. They are defined next.

Definition 4.2. Let m be an α-invariant square integrable probability measure m on M(G).
Then, the measure γm := γσ,m for σ ∈ Cc(G) with

∫
G σ(t) dt = 1 is called the autocorrelation.

As γm is positive definite, its Fourier transform γ̂ exists and is a positive measure on Ĝ. This
measure is called the diffraction measure of the dynamical system.

As discussed in the introduction to this section the usual approach to autocorrelation
proceeds by an averaging procedure along (models of) the substance in question. In our
framework, the substances are modeled by measures. Thus, we will have to average measures.
This is discussed in the remainder of this section. It will turn out that averaging is possible
once ergodicity is known. This is a consequence of the validity of Birkhoffs ergodic theorem
(see the appendix and in particular Lemma A.3 for further details as well). We will have to
exercise quite some care as the functions fϕ are not bounded.

Definition 4.3. A sequence (Bn) of compact subsets of G is called a van Hove sequence if

lim
n→∞

|∂KBn|
|Bn|

= 0

for all compact K ⊂ G. Here, for compact B,K, the “K-boundary” ∂KB of B is defined as

∂KB := ((B +K) \B) ∪ [(G \B −K) ∩B],

where the bar denotes the closure.

As discussed in the appendix, in our setting there exists a van Hove sequence (Bn) such
that for any compact K ⊂ G and any α-invariant ergodic probability measure m on M(G)
and any f ∈ L1(M(G),m)

(]) lim
n→∞

1
|Bn|

∫
∂KBn

|f(αt(ω))|dt = 0
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holds for m-almost every ω ∈ Ω. Without loss of generality we can assume that Bn = −Bn
for all n. Fix such a sequence for the rest of this section.

Lemma 4.4. Let m be an α-invariant square integrable ergodic probability measure on M(G).
Then for all φ, ψ ∈ Cc(G) nonnegative, there exists a C <∞ and a setM(G)′ of full measure
in M(G) such that for all ω ∈M(G)′ we have:

lim sup
n→∞

|ω̃Bn | ∗ |ωBn | (ψ ∗ φ̃)
|Bn|

≤ C .

Proof. Let K be a compact subset of G with K = −K and supp(ψ), supp(φ) ⊂ K. As
a product of two L2-functions the function fψ̃ ◦ | · |fφ̃ ◦ | · | belongs to L1, (]) implies (see
Proposition A.3 as well) that almost surely

lim
n→∞

∫
Bn+K T

t[fψ̃ ◦ | · |fφ̃ ◦ | · |]dt
|Bn|

=
∫
M(G)

fψ̃(|µ|)f
φ̃
(|µ|)dm(µ) =: C <∞.

For v, s ∈ Bn the function t 7→ ψ(−t+ v)φ(−t+ s) is zero outside Bn +K and hence∫
Bn+K

ψ(−t+ v)φ(−t− s)dt =
∫
G
ψ(−t+ v)φ(−t− s)dt = ψ ∗ φ̃(s+ v).

Moreover, since φ, ψ are non-negative a short calculation gives that

T tf
φ̃
(|ω|) =

∫
G
φ(−s− t)d|ω̃|(s) ; T tf

ψ̃
(|ω|) =

∫
G
ψ(v − t)d|ω|(v) .

Thus,

C = lim
n→∞

∫
Bn+K T

tfψ̃(|ω|)T tfφ̃(|ω|)dt
|Bn|

= lim
n→∞

∫
Bn+K

∫
G

∫
G ψ(−t+ v)φ(−t− s)d |ω| (v)d |ω̃| (s)dt

|Bn|

≥ lim sup
n→∞

∫
Bn

∫
Bn

∫
Bn+K ψ(−t+ v)φ(−t− s)dtd |ω| (v)d |ω̃| (s)

|Bn|

= lim sup
n→∞

∫
Bn

∫
Bn
ψ ∗ φ̃(s+ v)d |ω| (v)d |ω̃| (s)

|Bn|

= lim sup
n→∞

|ω̃Bn | ∗ |ωBn | (ψ ∗ φ̃)
|Bn|

and the proof is finished. �

Lemma 4.5. Let m be an α-invariant square integrable ergodic probability measure on M(G).
Let φ, ψ ∈ Cc(G) be given. Then

lim
n→∞

ω̃ ∗ ωBn(φ̃ ∗ ψ)− ω̃Bn ∗ ωBn(φ̃ ∗ ψ)
|Bn|

= 0 ,

almost surely in ω.

Proof. Let K be a compact subset of G with K = −K and supp(φ), supp(ψ) ⊂ K. Then,

(ω̃ ∗ ωBn − ω̃Bn ∗ ωBn)(φ̃ ∗ ψ) =
∫
G

∫
G

∫
G
φ(−v − s)ψ(r − v)1Bn(s)(1− 1Bn(r))dω(s)dω̃(r)dv.
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For the integrand not to vanish we need s ∈ Bn, r ∈ G\Bn and v ∈ (Bn+K)∩[(G\Bn)+K] ⊂
∂KBn. Hence, we can estimate∣∣∣(ω̃ ∗ ωBn − ω̃Bn ∗ ωBn)(φ̃ ∗ ψ)

∣∣∣ ≤ ∫
∂KBn

∫
G

∫
G

∣∣∣φ(−v − s)
∣∣∣ |ψ(r − v)| d |ω| (s)d |ω̃| (r)dv

=
∫
∂KBn

T−v[f|φ|(|ω|)f|ψ|(|ω|)]dv.

The proof follows now from (]). �

Theorem 4.6. Assume that G is second countable. Let m be an α-invariant square integrable
ergodic probability measure m on M(G). Then, almost surely in ω

lim
n→∞

ω̃Bn ∗ ωBn
|Bn|

= γm ,

where the limit is taken in the vague topology.

Proof. The proof proceeds in three steps.
Step 1 : Let φ, ψ ∈ Cc(G), t ∈ G be given and set Zn := φ̃ ∗ ψ ∗ ω̃ ∗ ωBn(t). Then,

limn→∞ |Bn|−1Zn = 〈fφ, T tfψ〉.
Proof of Step 1. Let a compact set K in G with K = −K, 0 ∈ K and supp(ψ) ⊂ K be given.

We are going to show that |Bn|−1Zn is of the same size as |Bn|−1
∫
Bn
fφ(αt−v(ω))fψ(α−v(ω))dv,

which by Birkhoff’s ergodic theorem converges to 〈fφ, T tfψ〉.
A direct calculation (see Theorem 5 in [3] as well) shows

Zn −
∫
Bn

fφ(αt−v(ω))fψ(α−v(ω))dv =
∫
G

(fφ(αt−v(ω))D(v)dv

with D(v) :=
∫
G ψ(v−s)(1Bn(s)−1Bn(v))dω(s). Then D(v) is supported on ∂KBn and hence

∆(n) :=
∣∣∣∣Zn − ∫

Bn

fφ(αt−v(ω))fψ(α−v(ω))dv
∣∣∣∣ ≤ ∫

∂KBn

∣∣∣fφ(αt−v(ω))D(v)
∣∣∣ dv.

Now, note that |D(v)| ≤
∫
G |ψ(v − s)| d |ω| (s) = f|ψ|(α−v |ω|), thus

∆(n) ≤
∫
∂KBn

∣∣∣fφ(αt−v(ω))f|ψ|(α−v|ω|)
∣∣∣ dv .

Application of (]) now completes the proof.

Step 2 Let D be a countable subset of Cc(G). Then, there exists a set Ω in M(G) of full

measure with limn→∞
ω̃Bn∗ωBn (φ̃∗ψ)

|Bn| = γm(φ̃ ∗ ψ) for all φ, ψ in D and ω ∈ Ω.

Proof of Step 2. This follows immediately from Step 1, (b) of Lemma 4.1 and Lemma 4.5.

Step 3 There exists a set Ω in M(G) of full measure with limn→∞
ω̃Bn∗ωBn (σ)
|Bn| = γm(σ) for

all σ ∈ Cc(G).
Proof of Step 3.
Since G is σ compact, we can find a sequence Kj of compact sets so that G = ∪jKj and

Kj ⊂ K◦j+1. It follows that G = ∪jK◦j and in particular that each compact subset K ⊂ G is
contained in some Kj .

As G is second countable, there exists a countable dense subset Dj in each CKj (G).
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By second countability again, there exists furthermore an approximate unit given by a
sequence (i.e. a sequence (δn) in Cc(G) such that ϕ ∗ δn converges to ϕ with respect to ‖ · ‖∞
for all ϕ ∈ Cc(G)). Moreover, we can pick this sequence so that there exists a fixed compact
set 0 ∈ K = −K such that supp(δn) ⊂ K , ∀n.

Let

D := (∪jDj) ∪ {δn|n ∈ N} .
Then D is countable.

Lets observe that for each σ ∈ Cc(G), there exists j so that supp(σ) ⊂ Kj . Thus, for all
ε > 0, there exists some ψ ∈ Dj and φ = δn so that ‖σ−φ∗ψ̃‖∞ ≤ ε, and supp(σ), supp(φ∗ψ̃) ⊂
Kj +K.

For each j ∈ N we can chose nonnegative φj , ψj ∈ Cc(G), j ∈ N such that φj ∗ ψ̃j ≥ 1 on
Kj +K.

By Lemma 4.4, for each j there exists a constant Cj ≥ 0 and a subset Ωj of full measure
so that for all ω ∈ Ωj we have

lim
n→∞

|ω̃Bn | ∗ |ωBn | (φj ∗ ψ̃j)
|Bn|

≤ Cj .

Let Ω′ be the set of full measure given by D in step 2. Then Ω := Ω′ ∩ (∩jΩj) has full
measure.

Let σ ∈ Cc(G) and ω ∈ Ω. Then there exists an j so that supp(σ) ⊂ Kj .
Let

C := max{Cj + 1, |γm|(φj ∗ ψ̃j), 1}.
Since ω ∈ Ωj , there exists an N0 so that for all n > N0 we have:

|ω̃Bn | ∗ |ωBn | (φj ∗ ψ̃j)
|Bn|

≤ Cj + 1 ≤ C .

Let ε > 0. Then there exists ψ, φ ∈ D so that

|σ − φ ∗ ψ̃| ≤ ε

C
φj ∗ ψ̃j .

When combined with the definition of C, this gives easily∣∣∣γm(σ − φ ∗ ψ̃))
∣∣∣ ≤ ε and

∣∣∣∣∣ ω̃Bn ∗ ωBn(σ − φ ∗ ψ̃)
|Bn|

∣∣∣∣∣ ≤ ε∀n > N0.

Moreover, since ω ∈ Ω′, by Step 2 we have∣∣∣∣∣ ω̃Bn ∗ ωBn(φ ∗ ψ̃)
|Bn|

− γm(φ ∗ ψ̃)

∣∣∣∣∣ ≤ ε∀n > N1 .

Hence, for all n > N := max{N0, N1} we have∣∣∣∣ ω̃Bn ∗ ωBn(σ)
|Bn|

− γm(σ)
∣∣∣∣ ≤ 3ε .

�
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5. Dynamical systems and pure point diffraction

In this section, we relate spectral theory of measure dynamical systems to diffraction theory.
We will assume that we are given an α-invariant square integrable probability measure m
on M(G) such that the associated unitary representation Tm is strongly continuous. The
associated autocorrelation will be denoted by γ = γm. We will then discuss the relationship
between γ̂m and the spectrum of the unitary representation Tm. Our main result shows that,
given (D), pure pointedness of γ̂m is equivalent to pure pointedness of Tm. This generalizes
the corresponding results of [3, 18, 26].

Proposition 5.1. The equation ρfϕ = |ϕ̂|2 γ̂m holds for every ϕ ∈ Cc(G).

Proof. The proof can be given exactly as in [3]. We include it for completeness reasons. By the
very definition of ρfϕ above, the (inverse) Fourier transform (on Ĝ) of ρfϕ is t 7→ 〈fϕ, T tfϕ〉.
By Lemma 4.1, we have 〈fϕ, T tfϕ〉 =

(
ϕ̃ ∗ϕ ∗ γm

)
(t). Thus, taking the Fourier transform (on

G), we infer ρfϕ = |ϕ̂|2 γ̂m. �

Note that the closed T -invariant subspace U of L2(M(G),m) gives rise to a representation
TU of G on U by restricting the representation T to U . The spectral family of TU will be
denoted by ETU .

Definition 5.2. Let ρ be a non-negative measure on Ĝ and let S be an arbitrary strongly
continuous unitary representation of G on an Hilbert space. Then, ρ is called a spectral
measure for S if the following holds for all Borel sets B: ES(B) = 0 if and only if ρ(B) = 0.

Theorem 5.3. Let m be a square integrable probability measure on M(G) with associated
autocorrelation γ = γm. Then, the measure γ̂ is a spectral measure for TU .

Proof. Given the previous results the proof follows as in [3]. We only sketch the details: Let
B be a Borel set in Ĝ. Then, ETU (B) = 0 if and only if 〈fϕ, ET (B)fϕ〉 = 0 for every
ϕ ∈ Cc(G). By Proposition 5.1, we have ρfϕ = |ϕ̂|2γ̂m and, in particular,

〈fϕ, ET (B)fϕ〉 = ρfϕ(B) =
∫
B
|ϕ̂|2 dγ̂m .

These considerations show that ETU (B) = 0 if and only if 0 =
∫
B |ϕ̂|

2 dγ̂m for every function
ϕ ∈ Cc(G). By density, this is equivalent to γ̂m(B) = 0. �

The preceding considerations allow us to characterize the eigenvalues of TU . In this context,
this type of result seems to be new. It may be useful in other situations as well.

Corollary 5.4. Let m be a square integrable probability measure on M(G) with associated
autocorrelation γ = γm. For ϕ ∈ Cc(G) and λ ∈ Ĝ, the following assertions are equivalent:

(i) |ϕ̂|2(λ)γ̂({λ}) > 0.
(ii) E({λ})fϕ 6= 0.
(iii) There exists an f 6= 0 with f = E({λ})f in the closed convex hull of {(λ, t)T tfϕ : t ∈

G}.

Proof. Proposition 5.1 gives

〈E({λ})fϕ, E({λ})fϕ〉 = ρfϕ({λ}) = |ϕ̂|2(λ)γ̂({λ})
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and the equivalence between (i) and (ii) follows. The implication (iii)=⇒ (ii) is immediate as
E({λ})T tfϕ = (λ, t)E({λ})fϕ for every t ∈ G. It remains to show (ii) =⇒ (iii). Let (Bn) be
a van Hove sequence in G.

As ϕ 7→ 1
|Bn|

∫
Bn
ϕ(s)ds is a probability measure on G, the standard theory of vector valued

integration (see e.g. Chapter 3 in [42]) shows that the L2-valued integral

1
|Bn|

∫
Bn

(λ, t)T tfϕdt

belongs to the closed convex hull of {(λ, t)T tfϕ : t ∈ G} for every n ∈ N. As von Neumann’s
ergodic theorem (see [24]) gives

E({λ})fϕ = lim
n→∞

1
|Bn|

∫
Bn

(λ, t)T tfϕdt,

where the limit is in the L2-sense, the claim follows. �

Our main result reads as follows:

Theorem 5.5. Let m be an α-invariant square integrable probability measure on M(G) sat-
isfying (D) with associated autocorrelation γ = γm. The following assertions are equivalent:

(i) The measure γ̂ is pure point.
(ii) T has pure point spectrum.

In this case, the group generated by {λ ∈ Ĝ : γ̂({λ}) > 0} is the set of eigenvalues of T .

Proof. The implication (ii) =⇒ (i) is immediate from Theorem 5.3.
As for (i) =⇒ (ii), we note that fϕ belongs to Hpp(T ) for every ϕ ∈ Cc(G) by Proposi-

tion 5.1. By Corollary 2.5, this implies that g ◦ fϕ belongs to Hpp(T ) for every g ∈ Cc(C). By
Lemma 2.6, products of functions of the form g ◦ fϕ, g ∈ Cc(C), ϕ ∈ Cc(G), then belong to
Hpp(T ) as well. Now, (ii) follows from (D).

It remains to show the last statement: set L := {λ ∈ Ĝ : γ̂({λ}) > 0} and denote the group
generated by L in Ĝ by S. By Theorem 5.3 every λ ∈ L is an eigenvalue of TU and hence of
T . As the eigenvalues form a group, we infer that S is contained in the group of eigenvalues
of T . Moreover, by Proposition 5.1, the spectral measure ρfϕ is supported on S (and even on
L) for every ϕ ∈ Cc(G). Thus, by Corollary 2.5, the spectral measure ρf is supported on S
for every f of the form f = g ◦ fϕ with g ∈ Cc(C) and ϕ ∈ Cc(G). By Lemma 2.6 this then
holds as well for finite products of such functions. As finite products of such functions are
total by (D), we infer that the spectral measure of every f is supported on S. Thus, the set
of eigenvalues is contained in S. �

Remark. The implication (ii) =⇒ (i) in Theorem 5.5 holds even if m doesn’t satisfy (D).

6. Perturbation theory: Abstract setting

In this section, we shortly discuss a stability result for pure point diffraction. In the
topological setting, an analogous result is discussed in [4]. Our result is more general in two
ways: First of all, the map Φ below does not need to be continuous but only measurable.
Secondly, the underlying space M(G) is much bigger than the spaces considered in [4] and
hence we obtain quite some additional freedom for perturbations.
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Definition 6.1. Let m be an α-invariant square integrable probability measure on M(G). A
measurable map Φ :M(G) −→M(G) is said to satisfy condition (C) with respect to m if the
following holds:

• Φ ◦ αt = αt ◦ Φ for every t ∈ G.
• The measure Φ∗(m) defined by Φ∗(m)(f) := m(f ◦ Φ) is square-integrable.

If Φ satisfies (C) the measure Φ∗(m) inherits many properties of m. For example it can
easily be seen to be ergodic if m is ergodic. Moreover, we have the following result on
equivariant measurable perturbations.

Theorem 6.2. Let m be an α-invariant square integrable probability measure on M(G) sat-
isfying (D) such that γ̂m is a pure point measure supported on the group S. Let Φ :M(G) −→
M(G) satisfy condition (C). Then, the dynamical system (M(G), Φ∗(m)) has pure point spec-
trum supported in S. In particular, the measure γ̂Φ∗(m) is a pure point measure supported on
S as well.

Proof. Set n := Φ∗(m). Denote the unitary representation of G induced by α on L2(M(G),m)
and on L2(M(G), n) by Tm and Tn respectively. Note that Tm is strongly continuous by
assumption (D). Thus, Tn is strongly continuous as, by definition of n, ‖T tnf − f‖L2(n) =
‖T tm(f ◦ Φ) − f ◦ Φ‖L2(m) for all f ∈ L2(M(G), n). The spectral measures associated to
f ∈ L2(M(G),m) and g ∈ L2(M(G), n) will be denoted by ρmf and ρng respectively. The
definition of n shows that

ρ̂ng (t) = 〈g, T tng〉 = 〈g ◦ Φ, T tmg ◦ Φ〉 = ρ̂mg◦Φ(t)

for all t ∈ G. This, gives
ρng = ρmg◦Φ.

As γ̂m is a pure point measure supported on the group S, we infer from our main result
that ρmf is a pure point measure supported on S for every f ∈ L2(M(G),m). Thus, the
preceding considerations show that ρng is a pure point measure supported on S for every
g ∈ L2(M(G), n). In particular, Tn has pure point spectrum supported on S. As γ̂n is
a spectral measure for a sub representation of Tn it must then be a pure point measure
supported on S as well. �
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discussions. N.S. would like to thank Robert Moody for stimulating interest in this subject
and NSERC for ongoing financial support. Part of this work was done while one of the authors
(N.S.) was visiting TU Chemnitz. Financial support from DFG for this visit as well as the
hospitality of Fakultät für Mathematik is gratefully acknowledged. Finally, the authors would
like to thank the anonymous referee for a very careful reading of the manuscript resulting in
various well placed suggestions.



POINT SPECTRUM FOR MEASURE DYNAMICAL SYSTEMS 19

Appendix A. Averaging Sequences

In this appendix we consider the following situation. Let X be a set with a σ-algebra B and
a measurable action α : G ×X −→ X of the locally compact amenable group G on X. Let
µ be an α-invariant ergodic probability measure on X. As usual a sequence (Bn) of compact
subsets of G is called a Følner sequence if

|Bn4(BnK)|
|Bn|

n→∞−−−→ 0

for all compact K ⊂ G. Here, 4 denotes the symmetric difference. We say that the Birkhoff
ergodic theorem holds along the Følner sequence (Bn) if for any f ∈ L1(X,µ)

lim
n→∞

1
|Bn|

∫
Bn

f(αtx)dt =
∫
X
f(x)dµ

for µ-almost every x ∈ X. The aim of this appendix is to show that any Følner sequence
admits a subsequence (Bn) such that Birkhoff ergodic theorem holds along (BnK) for any
compact K ⊂ G containing 0. This will show that certain “boundary terms” which we meet
in our considerations indeed go to zero.

Definition A.1. A Følner sequence Bn is called tempered if there exists a constant C > 0 so
that

∣∣∪k<n(B−1
k Bn)

∣∣ ≤ C |Bn|
As shown by Lindenstrauss in [30] the following holds:

(A) Every Følner sequence has a tempered subsequence.
(B) The Birkhoff ergodic theorem holds along any tempered Følner sequence.

Here, (B) is one of the main results of [30].

Lemma A.2. Let (B′n)n be a Følner sequence and let (Kl)l be an arbitrary sequence of
compact sets in G. Then, there exists a subsequence (Bn) of (B′n) so that the Birkhoff ergodic
theorem holds simultaneously along (BnKl)n for any l ∈ N.

Proof. Since (B′n) is a Følner sequence, the sequence (B′nKl)n is also a Følner sequence for any
fixed l. Hence any subsequence of it is Følner again. By (A), we can then find a subsequence
(Bk(1,n))n so that (Bk(1,n)K1)n is tempered. An inductive argument shows that for each l
there exists a subsequence (Bk(l,n))n of (Bk(l−1,n))n so that (Bk(l,n)Kl)n is tempered. Then,
by (B), Birkhoff’s ergodic theorem holds simultaneously along all (Bk(l,n)Kl)n. A simple
diagonalization procedure now completes the proof. �

Lemma A.3. Any Følner sequence contains a subsequence (Bn)n so that for any compact
K ⊂ G containing 0 and any f ∈ L1(µ) we have

lim
n→∞

∫
BnK

f(αt(x))dt
|Bn|

=
∫
X
f(y)dµ(y)

for µ-almost every x ∈ X.

Proof. Since G is σ-compact, we can find an increasing sequence of compact sets Kl, l ∈ N
so that K1 contains 0, Kl is contained in the interior of Kl+1 for each l ∈ N and the union
over all Kl is just G. Then, any compact K ⊂ G is a subset of some Kl. Now, let (Bn)n be
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the subsequence defined by Lemma A.2. Let f ∈ L1(µ) and a compact K ⊂ G with 0 ∈ K
be given and choose l with K ⊂ Kl. Then,∣∣∣∣∣
∫
BnK

f(αt(x))dt−
∫
Bn
f(αt(x))dt

|Bn|

∣∣∣∣∣ ≤
∫
(BnK)\Bn |f(αt(x))| dt

|Bn|
≤

∫
(BnKl)\Bn |f(αt(ω))| dt

|Bn|

=
1
|Bn|

(∫
BnKl

|f(αt(x))|dt−
∫
Bn

|f(αt(x))|dt
)
.

As |BnKl| / |Bn| → 1 when n → ∞, and Birkhoff’s ergodic theorem holds along both (Bn)
and (BnK) the result follows easily. �

We now come to the desired result on the vanishing of boundary type terms.

Proposition A.4. Let (Bn)n be a Følner sequence as in Lemma A.3. Then, for all f ∈ L1(µ)
and all compacts K ⊂ G

lim
n→∞

∫
Cn
|f(αt(x))| dt
|Bn|

= 0

for µ-almost every x ∈ X along any sequence (Cn) with Cn ⊂ BnK for all n ∈ N and
|Cn|/|Bn| −→ 0, n→∞.

Proof. Let ε > 0 be arbitrary. Set K̃ := K ∪ {0}.
For N ∈ N we define the function fN on X by fN (x) := f(x) if |f(x)| ≤ N and f(x) = 0

otherwise. Then limN→∞ f
N = f in L1(X,µ). Therefore, there exists an N ∈ N with

‖f − fN‖1 ≤ ε. By Lemma A.3, for almost every x ∈ X, there exists an n1 = n1(x, ε) so that
for all n ≥ n1, have∫

BnK
|f(αt(x))− fN (αt(x))|dt ≤

∫
BnK̃
|f(αt(x))− fN (αt(x))|dt ≤ 2ε |Bn| .

Thus, for such x and n ≥ n1,∫
Cn
|f(αt(x))| dt
|Bn|

≤
∫
Cn

∣∣fN (αt(x))
∣∣ dt

|Bn|
+

∫
Cn

∣∣(f(αt(x))− fN (αt(x)))
∣∣ dt

|Bn|

≤
∫
Cn
Ndt

|Bn|
+

∫
BnK

∣∣(f(αt(x))− fN (αt(x)))
∣∣ dt

|Bn|

≤ N |Cn|
|Bn|

+ 2ε .

As |Cn|/|Bn| → 0 by assumption, we obtain∫
Cn
|f(αt(x))| dt
|Bn|

≤ 3ε

for such x and all large enough n. As ε > 0 is arbitrary, the statement follows. �

When dealing with σ-compact, locally compact Abelian groups we can do better than
Følner sequences. Namely, in this case, there exists a van Hove sequence as shown in [46,
p. 249]. Of course, every van Hove sequence is a Følner sequence. In this case, we can apply
the previous Proposition with Cn = ∂KBn ⊂ BnK̃, n ∈ N, and K̃ := K ∪ {0} compact. This
is used in Section 4.
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